

Created by Nature. Recreated by Science.®

ULPNR LATEX -A PLATFORM FOR SUSTAINABLE NR INTERMEDIATES, BIOELASTOPLASTICS AND PRODUCTS

INTERNATIONAL LATEX CONFERENCE 2019 AKRON

Dr. Ranjit Matthan (Speaker)^a, rkmatthan@gmail.com

William R. Doyle (Consultant)^a wdoyle@vytex.com

^a Vystar[®] Corporation, 101 Aylesbury Rd, MA 01609,USA

7th August 2019

INTERNATIONAL LATEX CONFERENCE

PRESENTATION FORMAT

- NR LATEX INDUSTRY CURRENT TRENDS
- NR BIOELASTOPLASTS –A SUSTAINABLE CONCEPT?
- SPECIALITY NATURAL RUBBERS SOLID AND LATICES
- PRODUCT MODIFICATIONS AND DEVELOPMENTS
- THE FUTURE CRYSTAL BALL GAZING

vytex.NR TOTAL / NR LATEX
PRODUCTION AND CONSUMPTION (2018)1

	PROE		
YEAR	NR LATEX* [MT]	% SHARE	
2018	1,667,400	13,869,000	12.02

	CONS		
YEAR	NR LATEX [MT]	% Share	
2018	1,626,000	13,780,000	11.8

Globally the latex industry constitutes ~12 % of the rubber industry and is the **second largest** after tyre sector (60%)

NR/NR LATEX PRODUCTION TRENDS (2013-2018)¹

YEAR	NR LATEX* [MT]	NR TOTAL [MT]	% SHARE
2013	1,258,000	12,282,000	10.24
2018	1,667,000	13,869,000	12.02
5-YEAR GROWTH (MT)	409,000	1,587,000	
5 YEAR GROWTH	32.51%	12.92%	
CAGR	5.79%	2.46%	YOY-5 YEARS

*Excludes West African Latex Production

Natural Rubber production grew in spite of the adverse price trends for growers. Natural Rubber Latex production growth was more than double that of NR overall.

YEAR	NR LATEX [MT]	NR TOTAL [MT]	% Share
2013	1,258,000	11,430,000	11.00
2018	1,626,000	13,813,000	11.77
GROWTH (MT)	368,000	2,383,000	
5 YEAR 29.25% GROWTH		20.85%	
CAGR %	5.27%	3.86%	

Despite the adverse economic environment for rubber in the period the Latex consumption growth trend has remained positive and better than the non latex (tyre and non tyre) segment growth

NTERNATIONAL

ASIA NR LATEX PRODUCTION AND CONSUMPTION (2018)¹

PRODUCTION	NR LATEX *	ASIA LATEX	SHARE
YEAR	(MTA)	TOTAL (MTA)	(%)
2018	1,573,3000	1,477,000	93.90

CONSUMPTION	NR LATEX [MT]	ASIA* TOTAL	SHARE
YEAR		[MT]	(%)
2018	1,626,000	1,441,300	88.64

ASIA NR LATEX CONSUMPTION TRENDS (2013-2018)¹

YEAR	NR LATEX [MT]	ASIA TOTAL [MT]	Share (%)
2013	1,258,000	1,059,300	84.20
2018	1,626,000	1,441,300	88.47
GROWTH (MT)	368,000	382,000	
5 YEAR GROWTH	29.25%	36.1%	
CAGR %	5.27%	6.35%	

Vytex. PROJECTED SUPPLY-DEMAND (2023)

SI				Estimated In 5 Years*
No	PARTICULARS	2018		2023
		(MTA)		(MTA)
1.	ASIA LATEX PRODUCTION	1,477,000	5.44	1,925,000
2.	GLOBAL NR LATEX PRODUCTION	1,626,000	5.79	2,154,000
3	ASIA LATEX CONSUMPTION	1,441,300	6.35	1,961,000
4.	GLOBAL NR LATEX CONSUMPTION	1,584,000	5.27	2,047,000
	ASIA SHARE OF			
	PRODUCTION			89.4%
	CONSUMPTION			95.8%

*Upper Estimate based on current CAGR Trends

SL.NO	COUNTRY	Latex Consump	Latex Consumption in the Year			Growth	
		2013		2018		Change %	CAGR
		('000MTA)	% SHARE	('000MTA)	%SHARE	2013-2018	% per Annum
1	CHINA	294.8	27.8	467.5	32.4	4.6	9.66
2	MALAYSIA	379.2	35.8	452.6	31.5	4.3	3.6
3	THAILAND	130.4	12.3	205.7	14.5	2.2	9.54
4	INDONESIA	91.8	8.7	121.3	8.4	0.3	5.73
5	INDIA	77.8	7.3	91.7	6.4	0.9	3.34
6	VIETNAM	14.0 (E)	1.3	31.5	2.1	0.8	17.61
7	SRI LANKA	22.3	2.1	28.5	2.0	0.1	5.03
8	SOUTH KOREA	20.1	1.9	15.7	1.0	0.9	-4.82
9	JAPAN	9.8	0.9	4.4	0.3	0.6	-14.8
10	TAIWAN	4.4	0.4	3.7	0.2	0.2	-3.41
11	OTHERS*	14.63	1.5	18.7	1.2	0.3	5.03
	TOTAL	1059.3	100.0	1441.3			6.35
	* CAMBC	DIA, LAOS, PAKIS	TAN, BANGLADES	SH			

vytex

THE MALAYSIAN LATEX SECTOR 5-YEAR GROWTH SCENARIO

Note:

- * January-March
- ** Other Rubber: Synthetic Rubber, Reclaimed Rubber, Waste Rubber, Compound Rubber and Unvulcanised Rubber (HS Code 4002-4006)

Natural Rubber figures including compounded rubber to China

Malaysia's Exports of Selected Rubber Products, 2013-2018

Rubber Product	Value (U\$ X10 ⁶)	Share	CAGR	Value (U\$ X10 ⁶)	Share	
	2013	%	%	2018	%	
Gloves, Other Than Surgical Gloves	1817.6	77.57	14.1	3516.5	81.45	
Surgical Gloves	225.9	9.64	13.5	425.0	9.85	-91.3
Vulcanized Rubber Thread and Cord	180.0	7.68	3.1	154.5	3.58	
Sheath Contraceptives	64.9	2.77	12.2	115.3	2.67	1
Catheters	28.9	1.24	15.7	59.9	1.39	
Foam Products	18.5	0.78	13.9	35.4	0.82	1
Finger Stalls	4.3	0.19	6.9	6.0	0.14	
Teats & Soothers	2.8	0.13	9.0	4.3	1.10	
TOTAL	2342.9	100.0	13.0	4316.9	100.0	

Global and Asian Latex consumption is expected to maintain a growth rate of between 4-6 % per annum. Value of goods used **domestically and exported** by Asian latex product manufacturers is estimated at around **US \$ 13.75 billion** per annum (at cif prices) in 2018 and the market value estimated is **at least double**

NR LATEX INDUSTRY CURRENT TRENDS BIOELASTOPLASTICS –A SUSTAINABLE CONCEPT

SPECIALITY NATURAL RUBBERS SOLID AND LATICES PRODUCT MODIFICATIONS AND DEVELOPMENTS

THE FUTURE - CRYSTAL GAZING

VISCOELASTIC BEHAVIOUR MODELS FOR RUBBER

- Elastomeric Bearings Kelvin Model Rege 10
 - The Kelvin model uses a spring and dashpot in parallel.
 - The Kelvin model doesn't match relaxation data.
 - It doesn't exhibit time dependent relaxation.

Maxwell Viscoelastic Model

PLASTICITY : VISCOSITY/RHEOLOGY/NON NEWTONIAN FLOW BEHAVIOUR **ELASTICITY**: RESILIENCE /DAMPING/STRESS RELAXATION

DEVELOP STRUCTURED AMORPHOUS AND CRYSTALLINE REGIONS BY MOLECULAR MODIFICATIONS OF THE MAIN CHAINS (END GROUPS/EPOXIDATION/GRAFTING/

DEPOLYMERIZATION/HALOGENATION) AND/OR BLENDING & HOMOGENISATION TECHNIQUES.

NR LATEX INDUSTRY CURRENT TRENDS

BIOELASTOPLASTS – A SUSTAINABLE CONCEPT

SPECIALITY NATURAL RUBBERS SOLID AND LATICES

PRODUCT MODIFICATIONS AND DEVELOPMENTS

THE FUTURE - CRYSTAL GAZING

SUSTAINABLE LATEX GRADES

FSC-NITROSAMINE/AMMONIA FREE-ULTRA LOW PROTEIN - PV

BIOELASTOPLAST MATERIALS A class of materials derived principally from Natural Rubber (Hevea Brasiliensis) which are physico-chemical modified at pre- or post centrifuged stage of latex processing, such that its modified viscoelastic behavior(i.e. elasticity and plasticity) enables it application in a wider range of static and dynamic mode

Materials are made available either in the latex or solid form.

The starting point for these are from deproteinsied (ultra low protein) field latex which is a leaner and purer latex

•ALL THESE GRADES ARE AVAILABLE FOR EVALUATION

Carbon Neutral FSC = FOREST STEWARDSHIP COUNCIL AF = AMMONIA FREENF = NITROSAMINE FREE ULP = ULTRA LOW PROTEIN

NR LATEX INDUSTRY CURRENT TRENDS

BIOELASTOPLASTS – A SUSTAINABLE CONCEPT

SPECIALITY NATURAL RUBBERS SOLID AND LATICES

PRODUCT MODIFICATIONS AND DEVELOPMENTS

THE FUTURE - CRYSTAL GAZING

BIOELASTOPLAST MATERIALS MODIFICATION OF THE VISCOELASTIC BEHAVIOUR THROUGH ONE OR MORE OF THE FOLLOWING PROCESSES

- Deproteinising of the field latex with denaturing of residual proteins(ULPFL)
 - Preparation of low gel content latices from ULPFL
 - Epoxidation of the ULPFL pre-concentration

- Depolymerised and homogenised ULPFL latex with uniform particle size and molecular weight distribution

- Custom grafted latices from ULPFL with various monomers in the range of 15-50% (mol ratio)

- Custom compounded DPNR and ENR block rubbers with carbon black, silica/ENR/SWCNT incorporated in the post modified latex (ULPFL)stage

NR GRAFT COPOLYMER. DEPOLYMERISED NR HALOGENATED / HYDROHALOGENATED NR CYCLISED NR RESIN

ULPL-NF-LOWGEL MG -SOLID & LIQUID 15/30/49-METHYLMETHACRYLATE GRAFTS ADHESIVES/STIFFENERS/COMPATABILISERS

OTHER GRAFTS- VA/VP/STYRENE

ULPL -NF - LOWGEL DEPOLYMERISED NR - LATEX AND LIQUID PLASTICISERS/ BINDERS/ MOL WT MODIFIERS

ULPL-NF-HALOGENATED NR- LATEX AND POWDER

MARINE PAINT & RUBBER-TO-METAL BONDING COMPONENT IODINATED NR -CONDUCTIVE SHEETS BROMINATED NR – GLOSSY SURFACE FINISHES

ULPL-NF-LOW GEL HYDROHALOGENATED NR LATEX CLEAR THIN FILMS AND SHEETS- PRE-PVC- GOODYEAR PLIOFILMS

ULPL-NF-CYLCISED NR RUBBER RESIN FOR BONDING AND STIFFENER APPLICATIONS

I .NON RUBBERS IN NORMAL CL60 POST CENTRIFUGING⁶

RUBBER PHASE – PROTEINS (0.25%*), LIPIDS, HIGHER FATTY ACIDS, (0.36%) NITROGENOUS BASES, METALS, CAROTENOIDS

SERUM PHASE – CHOLINE(0.6%), QUEBRACHITOL, GLYCEROPHOSPHATE (0.04%), FREE PHOSPHATE (0.01%) HIGHER FATTY ACIDS (0.4%), VOLATILE FATTY ACIDS 0.02%), NITROGENOUS BASES(0.04%), OTHER ORGANIC ACIDS (0.02%-OXALIC/CITRIC, TARTARIC, SUCCINIC,ETC) PROTEINS (0.25%-BASIC, α-GLOBULIN), FREE AMINO ACIDS (0.14%-ALANINE, ASPARTIC ACID, ARGININE,CYSTINE,GLYCINE,GLUTAMIC ACID,ETC), POLYPEPTIDES, METALS)

SLUDGE – MgNH₄PO₄ , STEROL GLYCOSIDES

- ALL FIGURES INDICATE ~CONCENTRATION IN GM/100GM LATEX NON RUBBER SOLIDS ~2.0%
- KOH NUMBER DETERMINES ALL THE ACID RADICALS PRESENT- HIGHER FATTY ACIDS, ETC
- VFA DETERMINE THE VOLATILE FATTY ACIDS (ACETIC, FORMIC, PROPIONIC)
- NITROGEN CONTENT FROM PROTEINS, NITROGENOUS BASES, AMINO ACIDS, POLYPETIDES,

CL60 VYTEX TREATMENT POST CENTRIFUGING

RUBBER PHASE – PROTEINS (0.005%*), LIPIDS, HIGHER FATTY ACIDS, (0.36%) METALS (<0.005%)CAROTENOIDS

SERUM PHASE – CHOLINE(0.6%), QUEBRACHITOL, GLYCEROPHOSPHATE (0.04%), FREE PHOSPHATE (0.01%) HIGHER FATTY ACIDS (0.4%), VOLATILE FATTY ACIDS 0.02%), OTHER ORGANIC ACIDS (0.02%-OXALIC/CITRIC, TARTARIC, SUCCINIC,ETC), METALS (<0.005%)

SLUDGE- 0.0007%

- ALL FIGURES INDICATE ~CONCENTRATION IN GM/100GM LATEX NON RUBBER SOLIDS ~1.2%
- KOH NUMBER DETERMINES ALL THE ACID RADICALS PRESENT- HIGHER FATTY ACIDS, ETC
- VFA DETERMINE THE VOLATILE FATTY ACIDS (ACETIC, FORMIC, PROPIONIC)
- NITROGEN CONTENT FROM PROTEINS, NITROGENOUS BASES, AMINO ACIDS, POLYPETIDES,

SLUDGE CONTENT

SLUDGE CONTENT

Date of test : 19,/7/2019

Νο	LOT	GRADE	RESULT (% W/W, ON LATEX)
1	18	ΙA	0.0022
2	10		0.0022
3	28	НА	0.0015
4	20		0.0012
5	25		0.0005
6	25		0.0007
7	27		0.0007
8			0.0007

ANTIGENIC PROTEINS IN ULPL

1. Older	process	EP<42	µg/g	LOD)
----------	---------	-----------------	------	------

GUATEMALA 1010

ASTM D6499-18 Inhibition ELISA

GUTHRIE 7/11/2019

11369 **Report Number:** Inhibition Antigenic Surface Protein Sample Extract Assay Sample Sample Weight Volume Concentration Conc. Area dm² Identification (ml PBS) $(\mu g/dm^2)$ (g) (ug/ml) # LTS# (µg/g) Natural ULPL Latex 500 mL 1.2 6.0 0.2 1 44575 2.8 1.0 0.41000na/a GUTHRIE 2.Advanced process EP<42 µg/g (LOD) BINH DUONG, VIETNAM 1/31/2019 ACCREDITED 0084-650-3561487 CERT #1438.01 ASTM D6499-18 Inhibition ELISA 11254 **Report Number:** Inhibition Antigenic Sample Extract Protein Assay Surface Sample Sample Area Concentration Weight Volume Conc. dm² $(\mu g/dm^2)$ LTS# Identification (g) (ml PBS) $(\mu g/ml)$ $(\mu g/g)$ # DT-ULPL (LA) LOT 07 = Ultra Low 1 44362 Protein Latex (Low Amoniac) (with 02 1.3 6.5 0.1 2.20.5 0.3 film/lot) 500ng/g Innovative Technology Solutions across the Elastomer Industry Spectrum- Plantation to Products

NITROGEN CONTENT AND PROTEIN CONTENT

Lot	Туре	Nitrogen content	Lot	Type	Nitrogen content	EP	AP
		(%)	201	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(%)	µg/g	µg/g
4	LA	0.25	7	UI PI A	0 13	< 42	0.5
5	LA	0.26			0.10		0.5
17	LA	0.26	8	ULPLA	0.17	<42	0.5
22	LA	0.26	24	ULPLA	0.16	<42	0.5
23	HA	0.27	25	ULPLA	0.15	<42	0.5
28	HA	0.26	26		0 19	<42	0.5
30	HA	0.27	20	02111/(0.10	12	0.0
31	HA	0.26	27	ULPHA	0.17	<42	<0.2

For Protein estimation from N₂ content does the 6.24 multiplication factor apply?

Name	Trivial Name	Physiologcal Role	Estimated level (ng/g)
Hev b 1	Rubber Elongation factor	Biosynthesis	210
Hev b 3 Hev b 5	Small rubber particle protein Acidic Latex protein	Biosynthesis ?	260 5
Hev b 6.02	Hevein	Defence related protein	25
	ΤΟΤΑΙ		500

Innovativ

III. ULTRA LOW PROTEIN SOLID NATURAL RUBBER PROPOSED STANDARD

vytex

Proposed standard differentiates between the enzymatic and non enzymatic processes of deproteinisation

Properties	Grade ^a							
	E-WFS	E-CV50	E-CV60	NE-WFS	NE-CV50	NE-CV60	Test method	
Colour coding marker ^b	Green	Blueb	Blueb	Green	Blueb	Blueb		
Dirt retained on sieve maximum % (mass fraction)	0,03	0,03	0,03	0,03	0,03	0,03	ISO 249	
Ash maximum % (mass fraction)	0,25	0,25	0,25	0,25	0,25	0,25	ISO 247-1, ISO 247-2	
Nitrogen content % (mass fraction)	0,15	0,15	0,15	0,15	0,15	0,15	ISO 1656	
Volatile matter content % (mass fraction)	0,5	0,5	0,5	0,5	0,5	0,5	ISO 248-1	
Initial plasticity (P0) minimum	30	30	30	30	30	30	ISO 2007	
Plasticity retention index (PRI) ^c minimum	60	60	60	60	60	60	ISO 2930	
Mooney viscosity ML(1+4) at 100 °C	N/A	55±10¢	65±10¢	N/A	55±10 °	55±10 °	ISO 4660	
Extractable protein Maximum (µg/g)	100	100	100	100	100	100	ASTM D5712 d	
Antigenic protein Maximum (μg/g) °		10				10	ASTM D6499 d	

^a The raw material is given in Table 1.

^b Suggested colours.

^c Other viscosity levels may be agreed between interested parties. For specific applications, e.g. low viscosity CV40 for adhesives. In lieu of PRI the application of a maximum P of 12 units may also be agreed between interested parties.

^d ASTM Standard in the absence of an equivalent ISO Standard

^e Grade suitable for food and medical application

II. LOW GEL CONTENT LATICES

The molecular weight distribution of NR latex rubber (LA-TZ).

During Maturation. Storage and Transportation, the **gel content** of the rubber rises in 3 months to about **50%**, with consequent increase in the Mooney Viscosity(ML4) >100 and the Initial Plasticity (Wallace) of 80-100. This is akin to **Storage Hardening** in dry rubber, attributed to aldehyde groups .

Film forming properties are not affected, but, the effect is more significant in **Ultra thin films** that are finding increasing applications, e.g. ultrathin condoms, catheter balloons, etc.

The **removal of the proteins and reduction of the non rubber constitutents** has been found to inhibit the gel formation as the amino groups are significantly reduced.

Nitrogen content, gel content and ester content of HANR and DPNR.

Y. Yamamoto et al. / Polymer Degradation and Stability 156 (2018)

INTERNATIONAL LATEX CONFERENCE

NITROSAMINE TEST RESULTS LATEX AND BALLOONS

N-Nitrosamines and N-nitrosatable substances

Test Method

In accordance with: EN-71-12:2017 NF Latex Migration 1 hour at 40 °C Detection method: LC-MS/MS

	Abbrev	<u>Unit</u>	migratable N-nitrosamines	migratable, N-nitrosatable <u>substances</u>	Limits of quantification
Sample(s)			<u>180324655</u>	<u>180324655</u>	
N-Nitrosodimethylamine	NDMA	mg/kg	< 0.01	< 0.01	< 0.01
N-Nitrosodiethylamine	NDEA	mg/kg	< 0.01	< 0_01	< 0.01
N-Nitrosodiisopropylamine N-Nitrosodipropylamine	NDiPA/ NDPA	mg/kg	< 0.01	< 0.01	< 0.01
N-Nitrosodiisobutylamine N-Nitrosodibutylamine	N DiBA / NDBA	mg/kg	< 0.01	< 0_01	< 0.01
N-Nitrosomorpholine	NMOR	mg/kg	< 0.01	< 0.01	< 0.01
N-Nitrosopyrrolidine	NPYR	mg/kg	< 0.01	< 0.01	< 0.01
N-Nitrosopiperidine		mg/kg	< 0.01	< 0.01	< 0.01
N-Nitrosoeinyiphenyiamine	NEPRA	mg/kg	< 0.01	< 0.01	< 0.01
N-Nitrosodiisononvlamine	NDiNA	ma/ka	< 0.01	< 0.01	< 0.01
N-Nitrosodibenzvlamine	NDBzA	ma/ka	< 0.01	< 0.01	< 0.01
N-Nitrosodiethanolamine	NDELA	mg/kg	< 0.01	< 0.01	< 0.01
Conclusion			max. 0.05	max. I.U Pass	
CORDISION			Fd35	Fass	
<u>Sample(s)</u>	NF B	alloo	180324656	<u>180324656</u>	
N-Nitrosodimethylamine	NDMA	mg/kg	< 0.01	0.53	< 0.01
N-Nitrosodiethylamine	NDEA	mg/kg	< 0.01	0.12	< 0.01
N-Nitrosodiisopropylamine N-Nitrosodipropylamine	NDiPA/ NDPA	mg/kg	< 0.01	< 0.01	< 0.01
N-Nitrosodiisobutylamine N-Nitrosodibutylamine	NDiBA / NDBA	mg/kg	< 0.01	0.02	< 0.01
N-Nitrosomorpholine	NMOR	mg/kg	< 0.01	≥0.0 1	< 0.01
N-Nitrosopyrrolidine	NPYR	ma/ka	< 0.01	< 0.01	< 0.01
N-Nitrosopiperidine	NPIP	ma/ka	< 0.01	< 0.01	< 0.01
N-Nitrosoethylphenylamine	NEPhA	ma/ka	< 0.01	< 0.01	< 0.01
N-Nitrosomethylphenylamine	NMPhA	ma/ka	< 0.01	< 0.01	< 0.01
N-Nitrosodiisononvlamine	NDINA	ma/ka	< 0.01	< 0.01	< 0.01
N-Nitrosodibenzylamine	NDB7A	ma/ka	<001	< 0.01	< 0.01
N-Nitrosodiethanolamine	NDELA	mg/kg	0.02	< 0.01	< 0.01
Total			0.02	0.67	
Quantity allowed			(max. 0.05	max_1.0	
Conclusion			Pass	Pass	

VAGARIES OF NITROSAMINE TESTING RESULTS

LABORATORY. SAMPLE I	NOS.	AVERAGE mg/kg	Variation (%)
LAB01 (U.K) 1-3		0.46	8
LAB02 (GERMANY) 4-6		0.46	7
LAB03A (GERMANY) 7-9		0.50	27
LAB03B (DENMARK) 10-12		0.49	31
LAB0 4A (GERMANY) 13-15		0.39	41
LAB 5 (GERMANY) 16-18		0.42	13
LAB06(GERMANY) 19-21		0.47	27
LAB 07(GERMANY) 22-24		0.39	23
RANGE		0.39-0.50	8-40%
	8 LAB X3 SAMPLES	mg/kg	

REF: EKOPRENA TECHNICAL BULLETIN-MRB

Feature	Application	Recommended ENR grade	
Oil resistance	Hoses, seals, blow-out preventors,	ENR-50	
	Milking inflation, connectors and tubes	ENR-50, ENR-25	
Gas impermeability	Bladders, inner tubes and tyre liners	ENR-50 ^a	
Silica reinforcement	Where black is unacceptable and high reinforcement is required	ENR-25, ENR-50	
Wet-grip/Rolling resistance	Tyre treads for motor cycles, racing cars and fork lift trucks	ENR-25	
Damping	Anti-vibration mountings and other engineering applications	ENR-10 ^a	

Isoprene Unit

Epoxide

Properties		Grades ^a		Test Method
	ENR10	ENR 25 ^b	ENR 50 ^b	
Colour coding Marker ^b	Yellow	Green	Blue	
Dirt retained on sieve maximum	0,03	0,03	0,03	ISO 249
%(mass fraction) Ash maximum % (mass fraction)	0,25	0,25	0,25	ISO 247
% (mass fraction) Nitrogen content %(mass fraction)	0,15	0,15	0,15	ISO 1656
Volatile matter content %(mass fraction)	0,5	0,5	0,5	ISO 248-1
Epoxidation level, %(mole fraction) ^c	10±0.5	25±1	50±2	
Density (Mg/m3)	0.94±0.01	0.97±0.01	1.02±0.0 1	ISO1183
Mooney Viscosity ML(1+4) at 100 ℃	70-90	70-110	90-140	ISO 289-1
Glass Transition temperature. °C	-60±1	-45±2	-22±2	ISO22768:201 7
Solubility Parameter ^d (MpA) ^{1/2}	170±0.2	17.5±0.2	18.0±0.2	
Lovibond Colour	5.5	4.5	3.5	ISO 4660
Oil Resistance in ASTM Oil No.1 (IRM901) ASTM Oil No.2 (IRM 902)	10.0 20.0	1.2 3.0	0.1 0.6	ISO1817
ASTM Oil No.2(IERM903) Volume increase in rubber – after immersion for 4 days at	70.0	40.0	1.1	

INTERNATIONAL LATEX CONFERENCE Innovative Technology Solutions across the Elastomer Industry Spectrum- Plantation to Products

23 °C

REF: EKOPRENA TECHNICAL BULLETIN-MRB

Feature	Application	Recommended ENR grade
Oil resistance	Hoses, seals, blow-out preventors,	ENR-50
	Milking inflation, connectors and tubes	ENR-50, ENR-25
Gas impermeability	Bladders, inner tubes and tyre liners	ENR-50 ^a
Silica reinforcement	Where black is unacceptable and high reinforcement is required	ENR-25, ENR-50
Wet-grip/Rolling resistance	Tyre treads for motor cycles, racing cars and fork lift trucks	ENR-25
Damping	Anti-vibration mountings and other engineering	ENR-10 ^a

IV. EPOXIDISED NATURAL RUBBER

 $CH_2 - CH_2$ $CH_2 - CH_2 - CH_2$

INDENTATION LOAD HARDNESS ON DIFFERENT VYTEX FOAMS

Indentation Load to compress foam to 25% of original height (under a 50sq.in platen).

INTERNATIONAL LATEX CONFERENCE

vytex.

Vytex LATEX FOAMTESTED FOR HARMFUL SUBSTANCES OEKO-TEX® Certification – Confidence In Textile Products

Report No. 19.0.61779 21. <u>May 2019</u> Product Tested -100 % natural latex (rubber) foam in colour raw white used for pillows and mattresses (Certified as passed=Standard 100) Product Groups (I) Children (upto36 months) in this context are all articles, basic materials and accessories (II) Direct contact to skin are those which are worn with a large part of their surface in direct contact with the skin (e.g. Blouses, shirts,etc)

NOT DETECTED: Formaldehyde, Quinoline, OrganoTin Compounds, Phenol and Chlorinated Phenols, Phalates (Plasticisers), Bispehol A, TCEP, Azodicarbonimde (ADCA),Per/Poly Fluorinated compounds (PFC)

2. DETECTED: All within the permissible limits Ffor the product Nitrosatables NDEA (0.03ppm)/NDMA(2.51ppm)
Volatile emissions (7 tested-0.08ppm)
Polycyclic Aromatic hydrocarbons (PAH –Naphthalene 0.27ppm)
Surfactants (25.9ppm), Acidity (pH-7.2)
Heavy Metals(Extracted and Digested tests){Sb&Cu <4ppm},{As,Pb, Cr,Co,Ni <0.1ppm}, Cd(<0.05ppm), Hg(<0.01ppm)

INTERNATIONAL CONFERENCE

PRODUCTS MANUFACTURED FROM SPECIALITY SOLID RUBBERS

PRODUCTS FROM LGM DURAPRENA

NR LATEX INDUSTRY CURRENT TRENDS

BIOELASTOPLASTS – A SUSTAINABLE CONCEPT

SPECIALITY NATURAL RUBBERS SOLID AND LATICES

PRODUCT MODIFICATIONS AND DEVELOPMENTS

THE FUTURE - CRYSTAL GAZING

LATEX INCORPORATED SWCNTs BRING AN UNUSUAL PERFORMANCE SPACE EXPANSION (separate presentation on this subject)⁷

In the context of the **circular economy concept and life cycle analysis**, the role carbon positive sustainable NR materials in achieving the overall objective of an neutral carbon rubber industry is of crucial importance.

Biodegradability of NR: Biodegradation rates or rubber and rubber products are still lower than desired. Research studies are in progress to enhance rates in the end-of-life cycle using various degradation methodologies. All Rubber Products - Gloves-to-Tyres are already recyclable

INTERNATIONAL CONFERENCE

42 vystar

Bombay(West)Centre

IRMRA TEAM OF SCIENTISTS

ENGINEERS AND TECHNOLOGISTS

VYSTAR+IRMRA+END USER A WIN-WIN PARTNERSHIP

🖉 vytex.

Indian Rubber Manufacturers Research Association Under Dept. of Promotion for Industry & Internal Trade (DPIIT) formerly known as DIPP Ministry of Commerce & Industry, Govt. of India

MATERIALS AND PRODUCTS

RESEARCH AND DEVELOPMENT BIOOILS/BIOFILLERS/BIOELASTOPLAS <u>TESTING</u> TYRE & NONTYRE FORSENSIC ENGINEERING <u>EDUCATION & TRAINING</u> RSDC /MSc-University of Bombay)

GCMS To identify & quantify organic compounds

NATURAL RUBBER A SUSTAINABLE ECOFRIENDLY BIOELASTOMER

vytex References & Acknowledgements

References:

- 1. IRSG RSB 2019 VOL1--
- 2. LGM WEBSITE www.lgm.gov.my
- 3. MARGMA 9th International Rubber Conference 2018 www.margma.co.in
- 4. W.J.S.NAUNTON Applied Science f Rubber
- 5 MRB BULLETIN EKOPRENA & DURAPRENA
- 6.Therml degradation of deprotinised natural rubber Yoshimasa Yamamoto et al. National Institute of
 - Technology , Tokyo College, Tokyo 193-0997 Japan
- 7. OCSiAl Nano Augmented Materials Summit, Luxembourg, November 2017

Acknowledgements:

Mr. John Heath –Corrie Mc Coll,U.K. Mr. Gunther Lottmann – Fortaleza, Guatemala Mr. Christian Hernandez- Fortaleza Guatemala Mr. Pablo Blanco –ISL Foam Guatemala Mr. Joseph John – PCS P Ltd Kochi India Dr Rajkumar – IRMRA www.irmra.org Thane, India

